

N	ame:	

BennettMaths AQA 2H - Part 3

20 (a)	P, Q and R are points on a circle. S is a point inside triangle PQR.					
	Not dra accurat					
	Assume that S is the centre of the circle.					
	Work out the size of angle <i>x</i> .	[1 mark]				
	x =°					
20 (b)	In fact, S is not the centre of the circle.					
	What does this mean about the size of angle x ?					
	Tick one box.	[1 mark]				
	It is the same as the answer to part (a)					
	It is greater than the answer to part (a)					
	It is smaller than the answer to part (a)					
	It could be bigger or smaller than the answer to part (a)					

20 (c) For a different circle,

AB is a tangent at A

C and D are on the circumference of the circle

AC = CD

Not drawn ac curately

Here is Ollie's method to work out the size of angle y.

Angle $ADC = 50^{\circ}$ (alternate angles are equal)

Angle $CAD = 50^{\circ}$ (angles in an isosceles triangle)

Therefore $y = 80^{\circ}$ (angles in a triangle)

Is he correct?

Give a reason for your answer.

[1 mark]

Asmae decides to put £2500 into an account that pays compound interest.				
She wants to have at least £3200 in the account after 5 years.				
Work out to 1 decimal place the minimum annual interest rate she needs.				
Answer %				

Do not write
outside the
L

22 An approximate value of a root of an equation, x, can be found using the iterative formula

$$x_{n+1} = \sqrt[3]{7(x_n)^2 - 4x_n - 5}$$

The starting value is $x_1 = 5$

22 (a) Work out the values of x_2 and x_3

[2	marks]
----	--------

$$x_3 =$$

22 (b) By continuing the iteration, show that the value of x is more than 5.85

[1	mar	ΚJ
----	-----	----

Turn over for the next question

3 H	ere are three sets of cards.						
	Set A 1 2 3 3 6 6 6 8 8 8						
	Set B 1 1 2 4 7 7 8 8 10 10						
	Set C 3 3 6 6 7 8 9						
Ir	a game, a player has two options.						
	Option 1 Pick two cards from Set A Pick one card from Set B and						
	pick one card from Set C						
Т	The cards are picked at random.						
Т	The player wins if the total of their two cards is exactly 12						
V	Which option gives a better chance of winning?						
	Option 1 Option 2						
S	how working to support your answer. [4 marks]						
_							
_							
_							
_							
_							
_							
_							

	a = 45 to the nearest integer
	b = 70 to 1 significant figure
	Work out the upper bound for $6a^2 - b^2$ You must show your working.
ı	[3 mark
_	
-	
_	
_	
_	
_	
_	
	Answer
	/ triower
	Turn over for the next question

5	Show that	$\frac{x-7}{x+4} + \frac{x-7}{x+4}$	+7		
		x-4 $x-4$ $x-4$			
	simplifies to	$\frac{ax - b}{x^2 + 16}$	where a and b a	are integers.	
		χ10			[3 marks]

Do not write
outside the
box

Here is a sketch of $y = x^2$

26 (a) The minimum point of $y = x^2$ is at (0, 0)

Write down the coordinates of the minimum point of $y = x^2 - 3$

[1 mark]

Answer (
Allswei (,	

26 (b) The graph $y = x^2$ is reflected in the line y = 1

Write down the equation of the graph after this transformation.

[1 mark]

26 (c) $y = x^2$ is now transformed to give $y = (x - 2)^2$

Describe fully this single transformation.

[2 marks]

END OF QUESTIONS