

Name:	
MAMA.	
IVALIC	
1 101101	

BennettMaths AQA 2H - Part 2

A factory packs x boxes of plasters per hour. Each box contains 100 plasters. Show that the factory packs $\frac{5x}{3}$ plasters per minute.	A factory packs x boxes of plasters per hour. Each box contains 100 plasters.	Snow that these two rectangles are	[2 mark
Each box contains 100 plasters. Show that the factory packs $\frac{5x}{3}$ plasters per minute.	Each box contains 100 plasters. Show that the factory packs $\frac{5x}{3}$ plasters per minute.		accurately
		Each box contains 100 plasters.	

14 A company has 113 employees.

Information about their hourly rates of pay is shown in the table.

Hourly rate, £p	Number of employees
8 ≤ <i>p</i> < 12	56
12 ≤ <i>p</i> < 20	28
20 ≤ <i>p</i> < 40	17
40 ≤ <i>p</i> < 60	12
	Total = 113

The owner of the company uses the data to make two statements.

Statement A

"Over 35% of employees have an hourly rate that is more than £16"

Statement B

"The average hourly rate of pay is more than £18"

14 (a	a) S	how working that supports Statement A .
-------	------	--

[3 marks]

Do not v	vrit
outside	the
hov	

14 (b)	Why might Statement A not be true?	[1 mark]
14 (c)	Work out an estimate of the mean to support Statement B .	[3 marks]
14 (d)	Why is the mean not the best average to represent the data?	[1 mark]
	Turn over for the next question	

Expand $(a^2 - 7ab)(3a + 2b)$	[2 ma
Answer	
Line A	
has equation $y = ax - 5$	
passes through the point (9, 22)	
Line B has equation $2y - 5x = 7$	
Show that line A has a greater gradient than line B.	[3 ma
	Įo ma

11.7 cm 42° 6 cm	Not drawn accurately
Work out the size of angle x .	[4 marks]
<i>x</i> =	•

18	Rearrange z =		to make x the subject.	
		X		[3 marks]
		Answer_		

	6	24	52	90			
Work ou	t an exp	ression f	for the n^{\dagger}	th term o	f the seque	ence.	
							[-
		Answe	r				